
Homework 1: Lots of tools and some simple performance bugs CS491 HPCC

1 Introduction

In this homework, we prepare some of the tools we need for this and subsequent
homeworks, and get some initial practice using profilers to identify performance
bugs in a program.

For this class, you will need a computer under your control, capable of
running Ubuntu 18.04 either natively, or in a virtual machine. You will be
provided with free VMWare licenses, but if you have a preferred hypervisor, feel
free to use that instead. If you do not have a laptop or desktop computer capable
of running these softwares, you can request a loaner laptop for the semester from
the Computer Science department. Contact Phil Beltran 〈pbeltr1@uic.edu〉 for
more information about this option.

2 Prerequisites

• Optionally create a virtual machine with sufficient storage for Ubuntu
18.04 and some additional programs. 5 GB should be ample.

• Install Ubuntu 18.04 Desktop1.

• Install the build-essentials package apt-get install build-essentials

• Install linux-tools package, for the perf utility.

• Install bcc and all dependencies, the INSTALL.md file here has instruc-
tions for installing using apt: https://github.com/iovisor/bcc: the
snap package apt-get install snapd; snap install bcc fails to re-
solve symbols for some reason.

• Install the valgrind package.

3 Performance Debugging

The program raytrace, available at http://github.com/uicperformance/

sillybugs, contains a number of severe performance bugs. First install the
m4 macro preprocessor apt-get install m4, then clone the repository, edit
codes/Makefile.config to have the correct BASEDIR, then go to the folder
codes/apps/raytrace and build the binary using make.

To run the program use this command line ./RAYTRACE -a1 inputs/teapot.env

in the raytrace folder. It takes a few seconds to run, due to the bugs.
In addition to the source code, the git repository contains the binary RAYTRACE original.

This is the original program, without the introduced performance bugs, com-
piled with the same Makefile. You will find that the original binary runs much

1Ubuntu Desktop is a great choice, with lots of good free software for it. However if you,
like me, prefer to work on a Mac desktop, you can install Ubuntu 18.04 Server instead, and
ssh to the VM from your mac. I would strongly advise against using a Windows desktop for
this class.

Page 1



Homework 1: Lots of tools and some simple performance bugs CS491 HPCC

faster, and your job is to figure out why. TIP: you can use -a10 instead of -a1
to make the programs take longer to run, potentially giving you more detailed
profiling data.

The introduced bugs are well hidden, and the program is relatively large,
making it extremely difficult to debug its poor performance without tools. You’ll
want to use the tools discussed in class, and any other profiling tools you like,
to track down these bugs. Recommended tools include time, perf record,
valgrind --tool=callgrind and offcputime. Since it is quite a bit of code,
you may also want to use grep to search for keywords in text files.

3.1 The bugs

Several bugs have been introduced, and hidden with varying degree of sophisti-
cation inside the program. In this assignment, all bugs are exclusively added as
new lines to the code, thus they can be fixed by simply deleting or commenting
out the offending lines.

As a good first step, use time to note differences in time spent between the
buggy and the bug-free binaries, then decide what tools to use to track down
the bugs.

3.2 What to turn in

The task is to identify and fix all of the performance bugs in the program. You
will know that you have succeeded when your compiled binary on average runs
as fast as the original program, and produces the exact same output. Turn-
in will be done via github classroom (instructions will follow). Please turn in
your updated sillybugs source folder (sources only, not your executable or object
files). To turn in your submission, first add and commit files you have added or
modified in your repository. Then push the repository to your private GitHub
classroom repository (after adding the turn-in repository as a new remote). The
turn-in repo is accessible using the invitation link shared on Piazza.

Also, directly under the sillybugs folder, include a file named report.pdf,
containing the following bug report for each bug you identified. You can use
any program you want to produce the PDF file, but if you use LATEX, and
include the .tex sources next to the PDF file, you will receive a small bonus.

• A very short description of the bug, in terms of what unnecessary thing it
does (e.g. Uses the google search engine, via HTTP request, to calculate
sums of integers.).

• A very short description of the proposed fix (e.g. replace HTTP request
with + operator).

• A brief description of how you found the bug.

• A screen shot of the tool you used, showing the evidence you used to track
down this bug.

Page 2



Homework 1: Lots of tools and some simple performance bugs CS491 HPCC

3.3 Validating your fixes

Before turning in your homework, verify that your performance fixes did not in-
troduce correctness bugs. RAYTRACE produces an output file (inputs/teapot.rl).
Use any tool you want to check that the output from RAYTRACE original and
your RAYTRACE is the same.

3.4 Double-check your submission

To make sure that you submitted everything you think you submitted (git can
be a little tricky until you get used to it), git clone your turn-in repository into
a fresh folder, check that your report.pdf is in the sillybugs folder, and that
RAYTRACE compiles as you would expect.

Page 3


