
Homework 6: Some Minimal Vector Programs CS491 HPCC

1 Introduction

Since MMX was first introduced in the 90’s, x86 CPUs have offered an grow-
ing array (I’m not sorry!) of vector functionality. In this homework, we will
experiment with one of the more recent vector extensions, AVX2, which offers
many powerful packed integer instructions, operating on 256-bit registers. More
specifically, the assignment consists of variations of the problem of finding the
smallest value in an array.

2 Preliminaries

This homework requires access to a machine with AVX2, which is only available
on our largest research server:

nodes ssh nodes.cs.uic.edu 128 Intel Broadwell threads
your UIC netid password applies. For this homework, we are writing single-

threaded programs, however, so if your own computer supports AVX2, feel free
to use that. Even (shudder) virtual machines could be ok, as long as the host
CPU supports AVX2. Watch out: if a researcher is running parallel code on
nodes while you are running your program, your performance results could be
heavily affected. Before running a performance experiment, take a quick lock
with top.

3 Assignment

The template for this assignment is available at https://github.com/uicperformance/
minvec. To build the programs, simply run make in the checked-out repository
folder. For each assignment, only edit the file that contains the min-function in
question, leave the main program alone.

3.1 Establish performance baseline, and prepare LATEXreport

In cmin.c, complete the implementation of arraymin(), and minindex() so that
test cvec and test novec complete without error. While arraymin() returns
the minimum value, minindex() should return the index of the smallest value.
Run benchmark cvec and benchmark cnovec to measure the performance of
your implementation with and without vectorization.

Using gnuplot, generate a plot of benchmark cvec and bencmark cnovec
(four separate, labeled lines), with input size on the x axis, and cycles/op on
the y-axis. Add this to your LATEX report, which you will use to generate your
report.pdf. Use sizes from 8 to 1024 elements.

3.2 Iterative Vector Min

In iterative.c, implement a vectorized arraymin() function using a combina-
tion of C and inline assembly. You may assume that the input size is a multiple of

Page 1



Homework 6: Some Minimal Vector Programs CS491 HPCC

8 integers. Similar to what we did in class, use a C for-loop, and an inline assem-
bly loop body using the VPMINSD instruction to produce a vector of 8 values,
one of which is the smallest. Then, finish the job after the loop using another
chunk of inline assembly, to compute the single minimum value. For this part,
consider using a combination of the instructions VPSHUFD, VPERM2I128,
VALIGNR.

Plot cycles/op vs. input size. How does this compare the vectorized C
version? Study the assembly of the vectorized C version and try to determine
why. Add this to your report.

3.3 Iterative Vector Min with Index

In iterative.c, implement minindex(), another vectorized min function using a
combination of C and inline assembly. Here, VPMINSD will not help. Instead,
use a combination of VMOVDQA (move), VCMPGTD (compare), VPAND,
VPXOR, VPOR, VPADDD, and VPBROADCASTD, and perhaps others.

Start by writing a replacement for the VPMINSD instruction using VCMPGTD
(compare), VPAND, and VPOR. Then, add instructions for tracking the index
of each of the 8 array minima. Hint: VCMPEQD %%ymm0,%%ymm0,%%ymm0
sets every bit in ymm0 to 1. VPBROADCASTD puts the same scalar in each
integer-sized slot of the a vector register.

For simplicity, you may use C code to compute the final index outside the
loop.

Plot cycles/op vs. input size. How does this compare the vectorized C
version of minindex? Explain.

3.4 Faster, Fixed-Sized Vector Min (bonus)

In fixed.c, implement arraymin64(). Here, the array always has 64 integer
elements in it. Write the fastest array min you can come up with, targeting
Broadwell, using one big block of inline assembly, no branches, no loops. Here,
feel free to make use of VPMINSD, and anything else you want to try.

Once test fixed runs without error, announce your best benchmark fixed

performance on Piazza.
Hint: keep data dependencies, instruction latency and reciprocal through-

put in mind. Check Agner Fog’s tables for Broadwell. Report performance in
cycles/op, and explain briefly how your solution works.

3.5 turn-in instructions

Similar to the previous homework, turn-in is by git classroom, using this invita-
tion link https://classroom.github.com/a/46nOdbWP. Include all your code,
and add report.pdf to the root folder of your submission.

Page 2



Homework 6: Some Minimal Vector Programs CS491 HPCC

3.6 Double-check your submission

To make sure that you submitted everything you think you submitted, git clone
your turn-in repository into a fresh folder, check that your report.pdf is in the
submission folder, and that all the Makefile targets build correctly.

Page 3


